

Available coatings

- Metals (in stock): Au, Stainless steel (AISI316)
- Metals (by request): Ag, Al, Cu, Cr, Sn, Pt, Ca, Li, Mg, Ni,
- Inorganic (in stock): SiO/SiO₂, SiO₂, TiO/TiO₂, ITO
- Polymers(by request) : PANi, Teflon AF, PMMA, PS, PC, PE, PP, AKD

Interested in another coating? \rightarrow Please ask!

instruments Examples of QCM customers

Unilever, Bebington, UK Detergents, cleaning
· Geological Survey of Finland, Outokumpu Mineral processing
· Department of Phys. Chem., Turku, Finland Biofilm growth, implants
• DSM R&D, Geelen, The Netherlands Bio-fouling, protein adsorption
 Department of Physics, Brussels, Belgium Surface physics
· Indian Institute of Technology, Mumbai Polymer surfaces, swelling
Toyota Central R&D, Aichi, Japan Biosensors, biomaterials
• Universite Paris Marie Curie, Paris, France Functional surfaces, biosensors
· Department of Chem., Florida, USA Polymers, biomembranes
· Deptartment of Pharmacy, Montreal, Can PE multilayers, biofilms
• Kyushi University, Japan Funcitional surfaces, biosensors
· Department of Chem., Houston, USA Polymers, PE multilayers
 Institute for Surface Chemistry, Stockholm, Swe Miscellaneous
· Ugelstad Lab, Trondheim, Norway Corrosion inhibition, bio-fouling
ANU, Canberra, Australia Colloid & Surface Sci.
www.ksvltd.fi

Instruments

www.ksvltd.fi

What is the Goal of Impedance Analysis?

- To extract the mechanical properties of the load on the quartz crystal from electrical measurements
 - Harmonics (Overtones) easily measured
 - Very well established technique, theories and treatment of obtained data are well accepted

Why f and R at several overtones?

- · Higher overtones have better sensitivity
- When adsorbed film soft and the upper region is far away from the crystal surface i.e. film do not couple to crystal oscillation
 - \Rightarrow Normalised f and R at different overtones do not superimpose
 - \Rightarrow Sauerbrey relation overestimates the mass
- Frequency signal reflects the total mass of the adsorbed film, while the R-value reflects the softness of the film.

 \Rightarrow A soft and a rigid film may give close to the same frequency change, while they induces completely differences changes in the R-value.

Several overtones enables the determination of visco-elastic properties, film thickness, film density in the case of soft films

Instruments

Example Measurements

- Newtonian liquid
- · Rigid film in air
- · Rigid film in liquid
- · Visco-elastic finite layer in air
- · Visco-elastic layer in liquid
- · Liposome adsorption
- A few other very recently obtaines results

Results from modeling							
Lipozome matrix	ΔR.	Type of structure	Film thickness	Film viscosity	Film elasticity	Laquid bulk viscosity	
			ler (nm)	ne (mPas)	Her (MPa)	n1 (mPat)	
POPC PG no Ca2+	Small	SLB	5.03±0.66	-	-	0.88±0.02	
POPC <u>PG</u> with Ca2+	Small	SLB	4.89±0.26	-		0.88±0.01	
POPC <u>PS</u> no Ca ^{3*}	Large	SVL	10.40±2.16	4.91±0.52	0.54±0.02	0.89±0.01	
POPCPS with Ca2+	Large	SVL	9.83±0.39	3.05±0.57	0.34±0.13	0.92±0.04	
POPC <u>PA</u> no Ca ² *	Small	SLB	4.97±0.23		-	0.84±0.03	
POPCPA with Ca2*	Large	SVL	11 10 ± 2 12	3.27 ± 1.19	0.39±0.09	0.93±0.03	

www.ksvltd.fi

EXAMPLES Use of the set of the

www.ksvltd.fi

Instruments

Main references for modeling theory

D.A. Buttry and M.D. Ward, **1992**, vol 92, p. 1355 S.J. Martin et. al. Anal. Chem. **1991**, vol. 63, p. 2272 R.W. Cernosek et. al. IEEE Transactions, **1998**, vol. 45, p. 1399 H.L. Bandey et al. Anal. Chem., **1999**, vol. 71, p. 2205

